Creative Software Design

2 — Review of C Pointer, Const, and Structure

Yoonsang Lee
Fall 2022

Summary of Last Lecture (1-Courselntro)

Questions
— https://www.slido.com/ - Join #csd-ys

Quiz & Attendance

— https://www.slido.com/ - Join #csd-ys - Polls

— You must submit all quiz answers in the correct format to be
counted as attendance - Student ID: Your answer

Language
— T’ll “paraphrase” the explanation in Korean for most slides.

You MUST read 1-Courselntro.pdf CAREFULLY.

https://www.slido.com/
https://www.slido.com/

Today's Topics

* C Pointer Review
— Similarities and Differences between Arrays and Pointers
— Parameter Passing in C

 C Pointer & Const Review
— Pointer to Constant & Constant Pointer
— Two ways of declaring C Strings

e C Structure Review
— Structure & Typedef
— Arrow Operator
— Structures & Functions

C Pointer Review

Memory Layout

* Think of it as a 1D array.
 The address number increases by 1 every 1 byte.

 For example,

Address

Contents stored at the address

10241 (10242 | 10243 [10244 |1 10245 | 10246 | 10247

10248

10249

10250

10251

10252

10253

10254

10255

10256

10257

10258

10259

10260

10261 10262 | 10263 [10264 | 10265 [10266 | 10267

10268

10269

10270

10271

10272

10273

10274

10275

10276

10277

10278

10279

10280

Int variables in memory

Int numl = 5;
Int num2 = 129;

00000000 | 00000000

00000000 | 00000101

10241

10242 10243 [10244 | 10245 | 10246
numl

10247

10248 [10249] 10250 [10251

10252 | 10253

10254 | 10255

10256 [10257 | 10258

10259

10260

10261

10262 [10263 | 10264 | 10265 | 10266

10267

10268 [10269 | 10270 [10271

10272110273
num2

10274110275

10276 (1027710278

10279

10280

address-of operator: returns the address

g

&numl==7?
&num2 ==7?

- 10272

00000000 | 00000000 | 00000000 | 10000001
(FY1)
9 10246 Endianness: the order of bytes of digital data.

- Big-endian: The order shown above. Dominant in network protocols.
- Little-endian: Reverse order in bytes. Dominant in processor

architectures and memory. ex) 5 -> 00000101 00000000 00000000
00000000

double, float variables In memory

double a = 3.14;
floatb=1.1;

|IEEE Standard for Floating-Point Arithmetic (IEEE 754)

0

0

0

0

exp

frac

10241

10242

10243

10244 (10245

10246 (10247

10248

10249

10250

10251 (10252 | 10253

10254

10255 [10256

10257

10258

10259

10260

10261

10262

10263

10264 [10265

10266 [10267

10268

10269

10270

10271|10272|10273

10274

10275 (10276

10277

10278

10279

10280

&a==7?
&b =="7

- 10246
- 10272

exp

frac

char variable, C string In memory

char ch ="'A’;
char str[10] = "Hello";

01000001

(‘A™==65)

10241

10242

10243

10244 | 10245
ch ‘A’

10246

10247

10248 (10249

10250

10251

10252

10253

10254

10255

10256

10257

10258

10259

10260

10261

10262

10263

10264 [10265

10266
CH’

10267

669

10268 [10269

10270

10271
‘\0’

10272

10273

10274

10275

10276

10277

10278

10279

10280

&ch==7?

str=="7

- 10244
—> 10266

Pointer: a variable that stores the address of
another variable

* Int* . Integer pointer (pointer to int) - stores the address
of an integer variable

* INt* pnumi,;

* double* . double pointer (pointer to double) - stores
the address of an double variable

* double™ pnum?2;

e char*, float™, ...

[Practice]

#include <stdio.h>

int main()

{

char chl = 'a';

value of chl: 97

address of chl: 1636819
value of pchl: 1636819
address of pchl:‘1636804

char* pch1l = &cht;

printf("value of chl: %d#n", chl);

/

The actual allocated memory

printf("address of chl: %p#n", &chl); address varies from execution to

(
(

printf("value of pchil: %p#n", pchl);
(

execution.

printf("address of pchi: %p#n", &pchl);

return O;

Note that if you print a
memory address using %op, the
actual result will be printed in
hexadecimal.

But this slides use decimal
format for convenience.

A Pointer in Memory

value of chl: 97
address of chl: 1636819
value of pchl: 1636819

(A pointer size is 4 bytes in 32-bit program,
address of pchl: 1636804

8 bytes in 64-bit program)

1636801

1636802

1636803

1636804 | 1636805 | 1636806 | 1636807

pchl

1636819

1636808

1636809

1636810

1636811

1636812

1636813

1636814

1636815

1636816

1636817

1636818

1636819

chl ¢a’

1636820

)

points to

another variable is called pointer.

* That's why a variable that stores the address of

& operator and * operator

* & operator
* Returns the address of an operand (variable)
* address-of operator
* variable - address

* * operator
* Refers to the memory space (variable) pointed to by an operand

(pointer) int num = 5;
* indirection operator int* pnum = #

* address = variable
// store 20 to the varaiable
polnted by pnum

*pnum = 20;

An Array In Memory

#include <stdio.h>

int main ()

{
int arr[3] = {5, 10, 20};
printf ("arr: %p\n", arr);
printf ("&arr[0]: %p\n", &arr[0]);
printf ("&arr[1]: %p\n", &arr[l]);
printf ("&arr[2]: %p\n", &arr([2]);

return 0;

An Array In Memory

int arr[S] = {5, 105 20}; arr: 1638052
&arr[0]: 1638052

&arr[l]: 163805606
&arr[2]: 1638060

value of arr == address of arr[0] the difference is 4

/ - because it's an integer array

1638050/ 1638051 1638652|1638053|1638054|1638055 1635056|1638057|1638058|1638059 16§éoao|1638061|1638062|1638063 1638064 1638065
arr[0] 5 arr[1] 10 arr[2] 20

* The name of the array means the starting address of the
array (the address of the first element)

* In other words, value of arr == value of &arr[0]

Similarities between Arrays and Pointers

 Both represent (some) addresses.

 * gperator can be used for both.

* [] operator (index or subscript operator) can be used for
both.

int arr|]
Int* parr

{5, 10, 15};
arr;

// 5555
printf("%d %d %d %dtn", arr[0], *arr, parr[0], *parr);

Differences between Arrays and Pointers

« Array Is not Pointer!

* You cannot assign other values to an array.

int arr[3] = {5, 10, 20};
int num = 30;
arr = # // compile error

* Different sizeof operator results

int arr [3] — {5 10 20} ; sizel==12 : size of the array
It B f ’ size2==4 : size of the pointer (4 in 32-
In parr = arr, bit program, 8 in 64-bit program)

int sizel = sizeof(arr);
int size2 = sizeof(parr);

Pointer Increment / Decrement Operators

int 1 =1,
double d = 1.2;
intx pi = &I,
double* pd = &d;

pi: 1636948, pi+l:
pd: 1636932, pd+1l:

1636952, pi+2:
1636940, pd+2:

1636956
1636948

* If you add 1 to an int pointer, its value Is increased by 4.

* If you add 1 to a double pointer, its value is increased by 8.

e If you add 1 to a pointer to certain type, its value Is increased
by size-of that type.

 The same holds for decrement operators.

Meaning of Array [| Operations

e arr[i] : The value of the element at index |

* eX)

int arr[3] = {5, 10, 20};

e arr[2]: The value of the element at index 2 of the integer

array arr

N\

1638050

1638051

1638052| 1638053 | 1638054| 1638055

1638056 | 1638057| T638058| 1638059 | 1638460 | 1638061 | 1638062 1638063

arr[1] 10 m\‘ 20

Pointer Increment / Decrement Operations

« *(arr+i) : The value stored at the address increased by |
from the start of the array

* ex)

int arr[3] =

{5, 10, 20};

* *(arr+2): The value stored at the address increased by 2 from
the start of the integer array a

,

1638050

1638051

1638052|1638053|1638054|1638055
arr[0] 5

1638056|1638057|1638058|1638059
arr[1] 10

1638060|1
arr[2]

6 061|1638062|1638063
20

1638064

1638065

Relationship btwn. Pointer Inc/Dec Operations &
Array [] Operations

* The value of the element at index I In an array

* The value stored at the address increased by i from the start

of the array \A
arr[i] == *(arr+1)

* (This holds true both for arr as an array and arr as a pointer)

Passing an Array to a Function

* Pass the start address of array as pointer parameter

* Pass the length of array as well

int main()

{

int arr[] = {5, 10, 15,1};
printArray(arr, 4);

return 0;

void printArray(int* arr, int len)
{
int i1,
for(i=0; i<len; i++)
printf("%d ", arr[il]);
printf("wn");
}

Quiz #1

* Go to https://www.slido.com/
« Join #csd-ys
* Click "Polls"

» Submit your answer in the following format:

e Student ID: Your answer
* e.09. 2022123456: 4)

 Note that you must submit all quiz answers in this
format to be counted as attendance.

https://www.slido.com/

Parameter Passing

int add(int x, int y)

int temp;
temp = X + Vy;
return temp;

main ()

int a = 2, b 5;

int res = add(a, b);
printf ("%d\n", res);

return 0;

* \When cal ||ng add()1

 The value of a is copied to x
* The value of b is copied to y

*In C, arguments are passed to
functions by copying values.

« Called "call-by-value" or "pass-
by-value"

Pass the value of the argument

void swap wrong(int nl, int n2)

int

main ()

int numl=10, num2=20;
swap wrong (numl, num2);
// numl==10, num2==20
return O;

» Call function by copying
the value of argument

* The callee function
cannot access variables
defined in the caller
function.

Pass the address of the argument

void swap (int* pl, int* p2)
{

int temp = *pl;
*pl — *pz;
*p2 = temp;

}

int main ()

{
int numl=10, num2=20;
swap (&numl, &num?2) ;
// num2==20, num2==10
return O;

» Call function by copying
the address value of
argument

* The callee function can
change the value of
variables defined in the
caller function.

C Pointer & Const Review

Declaring a Pointer as Const - 1
(Pointer to Constant)

int num = 20;
const int* ptr = #

 Cannot change the value of a variable through the
pointer.

*ptr = 30; // Compile error!

 However, it does not make the num variable itself a
constant.

num = 30; // Ok

Declaring a Pointer as Const - 2
(Constant Pointer)

int numl = 20;
int num2 = 30;
int* const ptr = &num1;

» Make the pointer ptr a constant.
« = Cannot change the value of ptr.
« = Cannot change ptr to point to another variable.

ptr = &um2; // Compile error!

« However, you can change the value of a variable through the pointer.

ptr = 30; // Ok

Two ways of declaring C Strings

* char strl[] = “My String”;
» Declare a string as a char array\

* strl: An array containing the entire

string
/

e const char* str2 = “Your String”;
* Declare a string as a const char*

* str2: A pointer storing the starting
position of the string literal (stored
somewhere in read-only area of
memory)

Array str1

M

Yy

S

\O

Pointer str2

»

Your String\0

Two ways of declaring C Strings

* char strl[] = “My String”;

« "String in variable form" \

« Can modify the string contents by
accessing each element of the array

e const char™ str2 = “Your String”;
« "String in constant form"

« Cannot modify the string contents
as It's just a pointer to a string literal
& It's a pointer to constant

Array str1

M

Yy

S

\O

Pointer str2

o

Your String\0

String In Constant Form

e const char* str2 = “Your String”;

e Since str2 Is a pointer-to-constant, you can later
change It to point to another string literal.

*Str2 = “string2”;
* This iIs not possible for strl in the previous slide.

Quiz #2

* Go to https://www.slido.com/
« Join #csd-ys
* Click "Polls"

» Submit your answer in the following format:

e Student ID: Your answer
* e.09. 2022123456: 4)

 Note that you must submit all quiz answers in this
format to be counted as attendance.

https://www.slido.com/

C Structure Review

Structure

* YOU can create your own custom data type by
grouping items using struct keyword.

* EX) A data type representing a "book""

struct Book {
char title[50];
char author[50];
char subject[100];
int book 1d;

Structure Variable

* Defining a variable of the type struct Book:

struct Book bookl;

 Accessing the member of the variable book1:

structure variable member name

3 L _ . | // Assign O to the member book_id of the
pookl "SOO k_1id = 0; structure variable book1

member access operator

Typedef

* YOu can give a type a new name using typedef
keyword.

typedef unsigned int UINT;

// Give a new name "UINT" to unsigned int data type

UINT count; //Same as unsigned int count;

By convention, a user-defined data type (defined by struct,
typedef, and so on) starts with an uppercase letter.

Typedef and Structure

struct point

{

int xpos; /I A structure
Int ypos;

}

struct point posl; //Avariable of the type "struct point"

typedef struct point Point; | // Give a new name "Point" to the type

"struct point"

Point pos1; | //Easier to define a variable of that type

Typedef and Structure

Instead of this... You can do like this:
struct point typedef struct point
{ {
int Xpos,; Int Xpos,
int ypos,; Int ypos,
}; } Point;
typedef 'struct point Point; Even you can do like this (you can

omit the name of struct):

typedef struct
{
Int Xpos,
Int ypos;
} Point;

Initialize Structure Variables

typedef struct
{
int Xpos,
int ypos,
} Point;

You can initialize a structure variable by:

Point p1 = {10, 20};

initializer list

Then,

p1.xpos == 10; //=> True
pl.ypos == 20; //=> True

Same as array initialization:

int arrl[5] = {1, , ,

Array of Structures

typedef struct 1 |f you want to create four Point

{
int xpos: variables:
int ypos; _
} Point: « = Point arr[4];
arr[0] arr[1] arr[2] arr[3]
Int xpos int xpos int xpos int xpos

arr[2].xpos

/ int ypos int ypos int ypos \ int ypos
arr[0].xpos //// \\\

arr[0].ypos arr[2].ypos

-> Operator (Arrow Operator)

Point pos = {11, };
Point* ppos = &pos; // A pointer to Point

// Access member xpos of structure variable pointed to by ppos
(*ppos) .xpos = 10; // or
pPpPoOsS—->Xpos = ;

// Access member ypos of structure variable pointed to by ppos
(*ppos) .ypos = 20; // or
pPpPosS->ypos = ;

Quiz #3

* Go to https://www.slido.com/
« Join #csd-ys
* Click "Polls"

» Submit your answer in the following format:

e Student ID: Your answer
* e.09. 2022123456: 4)

 Note that you must submit all quiz answers in this
format to be counted as attendance.

https://www.slido.com/

Structures and Functions

e Structured variables can be passed to / returned from a
function.

* EX)
* void printPoint(Point p)
* Point getScale2xPoint(Point p)

* Note) Unless you want to change the value of an argument
Inside a function (as out-parameter), you usually pass it as a
const structure * type.

* Point getScale2xPoint(const Point* p)

Pass the value of the argument

Point getScale2xPoint(Point p)
{

D.XPOS = P.XPOS * 2,
D.YPOS = P.ypos * 2,
return p;

}

int main()

{

Point p1 = {1,2};
Point p2 = getScale2xPoint(p1);

printf("%d %dwn", pl.xpos, pl.ypos);

/] 12

return 0;

* The value of plis
not changed In
getScale2xPoint().

Pass the address of the argument

void scale2x(Point* pp) *The value of pl is
{]
SD->XD0S *= 2 changed in
\ PP—>ypos *= 2; Scalezx().
int main()
{

Point p1 = {1,2};
scale2x(8&p1);

printf("%d %dn", pl1.xpos, pl.ypos);
/] 2 4

return 0;

Operations on struct variables in C

* For basic data types (int, char, etc.), various
operations such as +, -, >, < are available.

* For structure variables, only = (assignment
operator), & (address-of operator), sizeof
operator are available.

= (assignment operator) just copies values of all
members of a structure variable.

Next Time

* If you’re not familiar with today’s topics, please see

my “Introduction to Software Design” slides to study
maore.

— https://cgrhyu.github.io/courses/2020-spring-isd.html

e Labs In this week:

— Labl: 2-Lab-Gitlab, Assignment 2-1, Assignment 2-2
— Lab2: No lab (Chuseok holiday)

 Next lecture:
— 3 - Differences Between C and C++

https://cgrhyu.github.io/courses/2020-spring-isd.html

