
Creative Software Design

2 – Review of C Pointer, Const, and Structure

Yoonsang Lee

Fall 2022

Summary of Last Lecture (1-CourseIntro)

• Questions

– https://www.slido.com/ - Join #csd-ys

• Quiz & Attendance

– https://www.slido.com/ - Join #csd-ys - Polls

– You must submit all quiz answers in the correct format to be
counted as attendance - Student ID: Your answer

• Language

– I’ll “paraphrase” the explanation in Korean for most slides.

• You MUST read 1-CourseIntro.pdf CAREFULLY.

https://www.slido.com/
https://www.slido.com/

Today's Topics

• C Pointer Review

– Similarities and Differences between Arrays and Pointers

– Parameter Passing in C

• C Pointer & Const Review

– Pointer to Constant & Constant Pointer

– Two ways of declaring C Strings

• C Structure Review

– Structure & Typedef

– Arrow Operator

– Structures & Functions

C Pointer Review

Memory Layout

10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260

10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280

Address

Contents stored at the address

•Think of it as a 1D array.

• The address number increases by 1 every 1 byte.

• For example,

int variables in memory

10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260

num1

10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280

num2

int num1 = 5;

int num2 = 129;

00000000 00000000 00000000 10000001

00000000 00000000 00000000 00000101

&num1 == ?

&num2 == ?

→ 10246

→ 10272

(FYI)

Endianness: the order of bytes of digital data.

- Big-endian: The order shown above. Dominant in network protocols.

- Little-endian: Reverse order in bytes. Dominant in processor

architectures and memory. ex) 5 -> 00000101 00000000 00000000

00000000

address-of operator: returns the address

double, float variables in memory

double a = 3.14;

float b = 1.1;

10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260

a

10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280

b

0 0 0 … 0 0 0 0 0 … 0

s exp frac

0 0 0 … 0 0 0 0 0 … 0

s exp frac

&a == ?

&b == ?

→ 10246

→ 10272

IEEE Standard for Floating-Point Arithmetic (IEEE 754)

char variable, C string in memory

10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260

ch ‘A’

10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

char ch = 'A';

char str[10] = "Hello";

01000001 (‘A’==65)

&ch == ?

str == ?

→ 10244

→ 10266

Pointer: a variable that stores the address of
another variable

• int* : integer pointer (pointer to int) - stores the address

of an integer variable

• int* pnum1;

• double* : double pointer (pointer to double) - stores

the address of an double variable

• double* pnum2;

• char*, float*, …

[Practice]

#include <stdio.h>

int main()
{

char ch1 = 'a';
char* pch1 = &ch1;

printf("value of ch1: %d\n", ch1);
printf("address of ch1: %p\n", &ch1);
printf("value of pch1: %p\n", pch1);
printf("address of pch1: %p\n", &pch1);

return 0;
}

value of ch1: 97

address of ch1: 1636819

value of pch1: 1636819

address of pch1: 1636804

The actual allocated memory

address varies from execution to

execution.

Note that if you print a

memory address using %p, the

actual result will be printed in

hexadecimal.

But this slides use decimal

format for convenience.

A Pointer in Memory

value of ch1: 97

address of ch1: 1636819

value of pch1: 1636819

address of pch1: 1636804

1636801 1636802 1636803 1636804 1636805 1636806 1636807 1636808 1636809 1636810

pch1 1636819

1636811 1636812 1636813 1636814 1636815 1636816 1636817 1636818 1636819 1636820

ch1 ‘a’

points to

•That's why a variable that stores the address of

another variable is called pointer.

(A pointer size is 4 bytes in 32-bit program,

8 bytes in 64-bit program)

& operator and * operator

• & operator

• Returns the address of an operand (variable)

• address-of operator

• variable→ address

• * operator

• Refers to the memory space (variable) pointed to by an operand

(pointer)

• indirection operator

• address→ variable

int num = 5;

int* pnum = #

// store 20 to the varaiable

pointed by pnum

*pnum = 20;

An Array in Memory

#include <stdio.h>

int main()

{

int arr[3] = {5, 10, 20};

printf("arr: %p\n", arr);

printf("&arr[0]: %p\n", &arr[0]);

printf("&arr[1]: %p\n", &arr[1]);

printf("&arr[2]: %p\n", &arr[2]);

return 0;

}

An Array in Memory

arr: 1638052

&arr[0]: 1638052

&arr[1]: 1638056

&arr[2]: 1638060

1638050 1638051 1638052 1638053 1638054 1638055 1638056 1638057 1638058 1638059 1638060 1638061 1638062 1638063 1638064 1638065

arr[0] 5 arr[1] 10 arr[2] 20

int arr[3] = {5, 10, 20};

value of arr == address of arr[0]

•The name of the array means the starting address of the

array (the address of the first element)

• In other words, value of arr == value of &arr[0]

the difference is 4

: because it's an integer array

Similarities between Arrays and Pointers

• Both represent (some) addresses.

• * operator can be used for both.

• [] operator (index or subscript operator) can be used for
both.

int arr[] = {5, 10, 15};
int* parr = arr;

// 5 5 5 5
printf("%d %d %d %d\n", arr[0], *arr, parr[0], *parr);

Differences between Arrays and Pointers

•Array is not Pointer!

•You cannot assign other values to an array.

•Different sizeof operator results

int arr[3] = {5, 10, 20};
int num = 30;
arr = # // compile error

int arr[3] = {5, 10, 20};
int* parr = arr;
int size1 = sizeof(arr);
int size2 = sizeof(parr);

size1==12 : size of the array

size2==4 : size of the pointer (4 in 32-

bit program, 8 in 64-bit program)

Pointer Increment / Decrement Operators

int i = 1;
double d = 1.2;
int* pi = &i;
double* pd = &d;

pi: 1636948, pi+1: 1636952, pi+2: 1636956

pd: 1636932, pd+1: 1636940, pd+2: 1636948

• If you add 1 to an int pointer, its value is increased by 4.

• If you add 1 to a double pointer, its value is increased by 8.

• …

• If you add 1 to a pointer to certain type, its value is increased

by size-of that type.

• The same holds for decrement operators.

Meaning of Array [] Operations

• arr[i] : The value of the element at index i

• ex)

• arr[2]: The value of the element at index 2 of the integer

array arr

1638050 1638051 1638052 1638053 1638054 1638055 1638056 1638057 1638058 1638059 1638060 1638061 1638062 1638063 1638064 1638065

arr[0] 5 arr[1] 10 arr[2] 20

int arr[3] = {5, 10, 20};

Pointer Increment / Decrement Operations

• *(arr+i) : The value stored at the address increased by i

from the start of the array

• ex)

• *(arr+2): The value stored at the address increased by 2 from

the start of the integer array arr

1638050 1638051 1638052 1638053 1638054 1638055 1638056 1638057 1638058 1638059 1638060 1638061 1638062 1638063 1638064 1638065

arr[0] 5 arr[1] 10 arr[2] 20

int arr[3] = {5, 10, 20};

Relationship btwn. Pointer Inc/Dec Operations &
Array [] Operations

• The value of the element at index i in an array

• The value stored at the address increased by i from the start

of the array

• (This holds true both for arr as an array and arr as a pointer)

arr[i] == *(arr+i)

Passing an Array to a Function

•Pass the start address of array as pointer parameter

•Pass the length of array as well

int main()
{

int arr[] = {5, 10, 15,1};
printArray(arr, 4);

return 0;
}

void printArray(int* arr, int len)
{

int i;
for(i=0; i<len; i++)

printf("%d ", arr[i]);
printf("\n");

}

Quiz #1

•Go to https://www.slido.com/

• Join #csd-ys

•Click "Polls"

• Submit your answer in the following format:
• Student ID: Your answer

• e.g. 2022123456: 4)

•Note that you must submit all quiz answers in this
format to be counted as attendance.

https://www.slido.com/

Parameter Passing

int add(int x, int y)

{

int temp;

temp = x + y;

return temp;

}

int main()

{

int a = 2, b = 5;

int res = add(a, b);

printf("%d\n", res);

return 0;

}

•When calling add(),

• The value of a is copied to x

• The value of b is copied to y

• In C, arguments are passed to

functions by copying values.

• Called "call-by-value" or "pass-

by-value"

Pass the value of the argument

•Call function by copying

the value of argument

•The callee function

cannot access variables

defined in the caller

function.

void swap_wrong(int n1, int n2)

{

int temp = n1;

n1 = n2;

n2 = temp;

}

int main()

{

int num1=10, num2=20;

swap_wrong(num1, num2);

// num1==10, num2==20

return 0;

}

Pass the address of the argument

void swap(int* p1, int* p2)

{

int temp = *p1;

*p1 = *p2;

*p2 = temp;

}

int main()

{

int num1=10, num2=20;

swap(&num1, &num2);

// num2==20, num2==10

return 0;

}

•Call function by copying

the address value of

argument

•The callee function can

change the value of

variables defined in the

caller function.

C Pointer & Const Review

Declaring a Pointer as Const - 1
(Pointer to Constant)

•Cannot change the value of a variable through the
pointer.

•However, it does not make the num variable itself a
constant.

int num = 20;
const int* ptr = #

*ptr = 30; // Compile error!

num = 30; // Ok

Declaring a Pointer as Const - 2
(Constant Pointer)

• Make the pointer ptr a constant.

• → Cannot change the value of ptr.

• → Cannot change ptr to point to another variable.

• However, you can change the value of a variable through the pointer.

int num1 = 20;
int num2 = 30;
int* const ptr = &num1;

ptr = &num2; // Compile error!

*ptr = 30; // Ok

Two ways of declaring C Strings

• char str1[] = “My String”;

• Declare a string as a char array

• str1: An array containing the entire

string

• const char* str2 = “Your String”;

• Declare a string as a const char*

• str2: A pointer storing the starting

position of the string literal (stored

somewhere in read-only area of

memory)

M y S t r i n g \0

Pointer str2

Array str1

Your String\0

Two ways of declaring C Strings

• char str1[] = “My String”;

• "String in variable form"

• Can modify the string contents by

accessing each element of the array

• const char* str2 = “Your String”;

• "String in constant form"

• Cannot modify the string contents

as it's just a pointer to a string literal

& it's a pointer to constant

M y S t r i n g \0

Pointer str2

Array str1

Your String\0

String in Constant Form

• const char* str2 = “Your String”;

•Since str2 is a pointer-to-constant, you can later

change it to point to another string literal.

• str2 = “string2”;

• This is not possible for str1 in the previous slide.

Quiz #2

•Go to https://www.slido.com/

• Join #csd-ys

•Click "Polls"

• Submit your answer in the following format:
• Student ID: Your answer

• e.g. 2022123456: 4)

•Note that you must submit all quiz answers in this
format to be counted as attendance.

https://www.slido.com/

C Structure Review

Structure

•You can create your own custom data type by

grouping items using struct keyword.

•Ex) A data type representing a "book":

struct Book {

char title[50];

char author[50];

char subject[100];

int book_id;

}

Structure Variable

•Defining a variable of the type struct Book:

•Accessing the member of the variable book1:

struct Book book1;

book1.book_id = 0;

structure variable

member access operator

member name

// Assign 0 to the member book_id of the

structure variable book1

Typedef

•You can give a type a new name using typedef

keyword.

typedef unsigned int UINT;

// Give a new name "UINT" to unsigned int data type

UINT count; // Same as unsigned int count;

By convention, a user-defined data type (defined by struct,

typedef, and so on) starts with an uppercase letter.

Typedef and Structure

struct point
{

int xpos;
int ypos;

};

struct point pos1;

typedef struct point Point;

Point pos1;

// A structure

// A variable of the type "struct point"

// Give a new name "Point" to the type

"struct point"

// Easier to define a variable of that type

Typedef and Structure

struct point
{

int xpos;
int ypos;

};

typedef struct point Point;

typedef struct point
{

int xpos;
int ypos;

} Point;

typedef struct
{

int xpos;
int ypos;

} Point;

Instead of this... You can do like this:

Even you can do like this (you can

omit the name of struct):

Initialize Structure Variables

typedef struct
{

int xpos;
int ypos;

} Point;

Point p1 = {10, 20};

p1.xpos == 10; //→ True
p1.ypos == 20; //→ True

You can initialize a structure variable by:

initializer list

Same as array initialization:

int arr1[5] = {1, 2, 3, 4, 5};

Then,

Array of Structures

• If you want to create four Point

variables:

•→ Point arr[4];

typedef struct
{

int xpos;
int ypos;

} Point;

arr[0] arr[1] arr[2] arr[3]

int xpos int xpos int xpos int xpos

int ypos int ypos int ypos int ypos

arr[0].xpos

arr[0].ypos

arr[2].xpos

arr[2].ypos

-> Operator (Arrow Operator)

Point pos = {11, 12};

Point* ppos = &pos; // A pointer to Point

// Access member xpos of structure variable pointed to by ppos

(*ppos).xpos = 10; // or

ppos->xpos = 10;

// Access member ypos of structure variable pointed to by ppos

(*ppos).ypos = 20; // or

ppos->ypos = 20;

Quiz #3

•Go to https://www.slido.com/

• Join #csd-ys

•Click "Polls"

• Submit your answer in the following format:
• Student ID: Your answer

• e.g. 2022123456: 4)

•Note that you must submit all quiz answers in this
format to be counted as attendance.

https://www.slido.com/

Structures and Functions

• Structured variables can be passed to / returned from a
function.

• Ex)

• void printPoint(Point p)

• Point getScale2xPoint(Point p)

• Note) Unless you want to change the value of an argument
inside a function (as out-parameter), you usually pass it as a
const structure * type.

• Point getScale2xPoint(const Point* p)

Point getScale2xPoint(Point p)
{

p.xpos = p.xpos * 2;
p.ypos = p.ypos * 2;
return p;

}

int main()
{

Point p1 = {1,2};
Point p2 = getScale2xPoint(p1);
printf("%d %d\n", p1.xpos, p1.ypos);
// 1 2
return 0;

}

Pass the value of the argument

•The value of p1 is

not changed in

getScale2xPoint().

void scale2x(Point* pp)
{

pp->xpos *= 2;
pp->ypos *= 2;

}

int main()
{

Point p1 = {1,2};
scale2x(&p1);
printf("%d %d\n", p1.xpos, p1.ypos);
// 2 4
return 0;

}

Pass the address of the argument

•The value of p1 is

changed in

scale2x().

Operations on struct variables in C

•For basic data types (int, char, etc.), various

operations such as +, -, >, < are available.

•For structure variables, only = (assignment

operator), & (address-of operator), sizeof

operator are available.

•= (assignment operator) just copies values of all

members of a structure variable.

Next Time

• If you’re not familiar with today’s topics, please see
my “Introduction to Software Design” slides to study
more.

– https://cgrhyu.github.io/courses/2020-spring-isd.html

• Labs in this week:

– Lab1: 2-Lab-Gitlab, Assignment 2-1, Assignment 2-2

– Lab2: No lab (Chuseok holiday)

• Next lecture:

– 3 - Differences Between C and C++

https://cgrhyu.github.io/courses/2020-spring-isd.html

